An iteration method for calculation with Laurent series

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fast calculation of Laurent expansions for matrix inverses

Previously described algorithms for calculating the Laurent expansion of the inverse of a matrix-valued analytic function become impractical already for singularity orders as low as around p = 6, since they require over O(28) matrix multiplications and correspondingly large amounts of memory. In place of using mathematically exact recursions, we show that, for floating point calculations, a rat...

متن کامل

An inverse iteration method for eigenvalue problems with eigenvector nonlinearities

Abstract. Consider a symmetric matrix A(v) ∈ Rn×n depending on a vector v ∈ Rn and satisfying the property A(αv) = A(v) for any α ∈ R\{0}. We will here study the problem of finding (λ, v) ∈ R × Rn\{0} such that (λ, v) is an eigenpair of the matrix A(v) and we propose a generalization of inverse iteration for eigenvalue problems with this type of eigenvector nonlinearity. The convergence of the ...

متن کامل

Generalization of Dodgson's "Virtual Center" Method; an Efficient Method for Determinant Calculation

Charles Dodgson (1866) introduced a method to calculate matrices determinant, in asimple way. The method was highly attractive, however, if the sub-matrix or the mainmatrix determination is divided by zero, it would not provide the correct answer. Thispaper explains the Dodgson method's structure and provides a solution for the problemof "dividing by zero" called "virtua...

متن کامل

An Accelerated Subspace Iteration Method

The analysis of a number of physical phenomena requires the solution of an eigenproblem. It is therefore natural that with the increased use of computational methods operating on discrete representations of physical problems the development of efficient algorithms for the calculation of eigenvalues and eigenvectors has attracted much attention [l]-[8]. In particular, the use of finite element a...

متن کامل

Diagonalization and Rationalization of Algebraic Laurent Series

— We prove a quantitative version of a result of Furstenberg [20] and Deligne [13] stating that the the diagonal of a multivariate algebraic power series with coefficients in a field of positive characteristic is algebraic. As a consequence, we obtain that for every prime p the reduction modulo p of the diagonal of a multivariate algebraic power series f with integer coefficients is an algebrai...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Quarterly of Applied Mathematics

سال: 1946

ISSN: 0033-569X,1552-4485

DOI: 10.1090/qam/16692